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The Problem:

* Global models are far too coarse to simulate high
intensity tropical cyclones

* Embedding regional models within global models
introduces problems stemming from incompatibility
of models, and even regional models are usually too
coarse
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To the extent that they simulate tropical
cyclones at all, global models simulate
storms that are largely irrelevant to
society and to the climate system itself,
given that ocean stirring effects are
heavily weighted towards the most
intense storms



What are the true resolution
requirements for simulating
tropical cyclones?




Numerical convergence in an axisymmetric,
nonhydrostatic model (Rotunno and Emanuel, 1987)
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Another Major Problem with Using
Global and/or Regional Models to
Simulate Tropical Cyclones:

Model TCs are not coupled
to the ocean
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QOur Solution:

Drive a simple but very high resolution,
coupled ocean-atmosphere TC model
using boundary conditions supplied by
the global model or reanalysis data set




CHIPS: A Time-dependent, axisymmetric

P

Hydrostatic and gradient balance above PBL

Moist adiabatic lapse rates on M surfaces
above PBL

Boundary layer quasi-equilibrium
Deformation-based radial diffusion



Detailed view of Entropy and Angular Momentum

Equivalent potential temperature (K), from 334.4955 to 373.3983

16

14

12

10

z (km)

/

0 20 40 60 80 100 120 140 160 180 200
Radius (km)




® Ocean Component

(Schade, L.R., 1997: A physical interpreatation of SST-feedback.

Preprints of the 22" Conf. on Hurr. Trop. Meteor., Amer. Meteor.
Soc., Boston, pgs. 439-440.)

« Mixing by bulk-Richardson number closure

- Mixed-layer current driven by hurricane model surface
wind
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Ocean columns integrated only

k\ Along predicted storm track.
\ Predicted storm center SST
AN anomaly used for input to ALL
\ Future track
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Comparison with same atmospheric model coupled
to 3-D ocean model; idealized runs:
Full model (black), string model (red)

Maximum sustained winds
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Hindcast of Katrina

Hurricane Katrina 2005
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Application to Assessing Tropical
Cyclone Risk in a Changing Climate




e Step 1: Seed each ocean basin with a very large
number of weak, randomly located cyclones

e Step 2: Cyclones are assumed to move with the large
scale atmospheric flow in which they are embedded,
plus a correction for beta drift

e Step 3: Run the CHIPS model for each cyclone, and
note how many achieve at least tropical storm
strength

e Step 4: Using the small fraction of surviving events,
determine storm statistics.

l Details: Emanuel et al., BAMS, 2008
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6-hour zonal displacements in region bounded by 10° and 30°

N latitude, and 80° and 30° W longitude, using only post-1970
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Seasonal Cycles
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3000 Tracks within 100 km of Miami

—
N

B 49 Best tracks, 1920 to 2008
I 2849 Synthetic tracks

= £ - = =
N (L) £ (3] =2
T I T T T
1 | 1 1 1

Annual Exceedence Frequency

3
-—
I
1

. ML o
40 60 80 100 120 140 160 180 200
Maximum Wind Speed (knots)

| 95% confidence
l bounds




Return Periods
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Sample Storm Wind Swath

Track number 7940, September
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Simulated vs. Opserved Power Dissipation lrends, 1950-2006
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~ Now Use Daily Output from IPCC

~~ Models to Derive Wind Statistics,

~ Thermodynamic State Needed by
Synthetic Track Technique
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Compare two simulations each from

P
1. Last 20 years of 20" century
gfsi'mulations
-
- 2. Years 2180-2200 of IPCC Scenario
&Alb (CO, stabilized at 720 ppm)
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7 Model Consensus Change in Storm
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Coastal Damage Function, Northeast U.S.
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Change In Lanaslide Risk

Landslide Frequency based on 1000 Events near Santo Domingo
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Couple Hurricane Model to Storm Surge Model (ADCIRC)

Results for. the Batteny, New. York City

ADCIRC simulation for Battery, NY, for 1thiYHurr12116-r01200
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* Global (and most regional) models are far too
coarse to simulate reasonably intense
tropical cyclones

* Globally and regionally simulated tropical
cyclones are not coupled to the ocean




 We have developed a technique for downscaling
global models or reanalysis data sets, using a
very high resolution, coupled TC model phrased
in angular momentum coordinates

 Model shows high skill in capturing spatial and
seasonal variability of TCs, has an excellent
intensity spectrum, and captures well known
climate phenomena such as ENSO and the
effects of warming over the past few decades
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* Application to global models under warming
scenarios shows great regional and model-to-
model variability. As with many other climate
variables, global models are not yet capable
of simulating regional variability of TC
metrics



